Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1
نویسندگان
چکیده
Nanotechnology-derived platforms, such as dendrimers, are very attractive in several biological applications. In the case of human immunodeficiency virus (HIV) infection, polyanionic carbosilane dendrimers have shown great potential as antiviral agents in the development of novel microbicides to prevent the sexual transmission of HIV-1. In this work, we studied the mechanism of two sulfated and naphthylsulfonated functionalized carbosilane dendrimers, G3-S16 and G2-NF16. They are able to inhibit viral infection at fusion and thus at the entry step. Both compounds impede the binding of viral particles to target cell surface and membrane fusion through the blockage of gp120-CD4 interaction. In addition, and for the first time, we demonstrate that dendrimers can inhibit cell-to-cell HIV transmission and difficult infectious synapse formation. Thus, carbosilane dendrimers' mode of action is a multifactorial process targeting several proteins from viral envelope and from host cells that could block HIV infection at different stages during the first step of infection.
منابع مشابه
Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides
Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches t...
متن کاملEfficacy of HIV antiviral polyanionic carbosilane dendrimer G2-S16 in the presence of semen
The development of a safe and effective microbicide to prevent the sexual transmission of human immunodeficiency virus (HIV)-1 is urgently needed. Unfortunately, the majority of microbicides, such as poly(L-lysine)-dendrimers, anionic polymers, or antiretrovirals, have proved inactive or even increased the risk of HIV infection in clinical trials, most probably due to the fact that these compou...
متن کاملPrevention of vaginal and rectal herpes simplex virus type 2 transmission in mice: mechanism of antiviral action
Topical microbicides to stop sexually transmitted diseases, such as herpes simplex virus type 2 (HSV-2), are urgently needed. The emerging field of nanotechnology offers novel suitable tools for addressing this challenge. Our objective was to study, in vitro and in vivo, antiherpetic effect and antiviral mechanisms of several polyanionic carbosilane dendrimers with anti-HIV-1 activity to establ...
متن کاملPotential inhibition of HIV-1 encapsidation by oligoribonucleotide–dendrimer nanoparticle complexes
BACKGROUND Encapsidation, the process during which the genomic RNA of HIV is packaged into viral particles, is an attractive target for antiviral therapy. This study explores a novel nanotechnology-based strategy to inhibit HIV encapsidation by an RNA decoy mechanism. The design of the 16-mer oligoribonucleotide (RNA) decoy is based on the sequence of stem loop 3 (SL3) of the HIV packaging sign...
متن کاملNanotechnology as a New Therapeutic Approach to Prevent the HIV-Infection of Treg Cells
BACKGROUND HIV-1 has proved to infect regulatory T cells (Treg) modifying their phenotype and impairing their suppressive capacity. As Treg cells are a crucial component in the preservation of the immune homeostasis, we researched that the antiviral capacity of carboxilan dendrimers prevents the HIV-1 infection of Treg and their effects. The phenotype and suppressive capacity of Treg treated or...
متن کامل